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The knowledge of real-life traffic patterns is crucial for a good understanding and analysis of transportation
systems. These data are quite rare. In this paper we propose an algorithm for extracting both the real physical
topology and the network of traffic flows from timetables of public mass transportation systems. We apply this
algorithm to timetables of three large transportation networks. This enables us to make a systematic compari-
son between three different approaches to construct a graph representation of a transportation network; the
resulting graphs are fundamentally different. We also find that the real-life traffic pattern is very heterogenous,
in both space and traffic flow intensities, which makes it very difficult to approximate the node load with a
number of topological estimators.
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I. INTRODUCTION

In recent years, studies of transportation networks have
drawn a substantial amount of attention in the physics com-
munity. The graphs derived from the physical infrastructure
of such networks were analyzed in the examples of a power
grid �1,2�, a railway network �3,4�, road networks �5–9�,
pipeline network �4�, and urban mass transportation systems
�10–14�. These studies have one important feature in
common—they focus exclusively on the topology of the net-
work, and they do not take into account real-life traffic pat-
terns. This makes the view very incomplete, because carry-
ing traffic is the ultimate goal of every transportation system.
Facing a lack of real-life traffic data, some authors have tried
to estimate traffic patterns based exclusively on topology.
Probably the most common load estimator is betweenness
�used, e.g., in Refs, �15–20��, which assumes that each pair
of nodes exchanges the same amount of traffic. But real-life
traffic patterns are in fact very heterogenous, in both space
and traffic flow intensities. Therefore the most important
nodes and edges from a topological point of view might not
necessarily carry the most traffic. In Ref. �21� we show that
in typical transportation networks the correlation between the
real load and betweenness is very low. Therefore it is essen-
tial for some applications to know the real traffic pattern.

Interestingly, networks of traffic flows were studied sepa-
rately; see the example of flows of people within a city �22�
and commuting traffic flows between different cities �23�.
These studies, in turn, neglect the underlying physical topol-
ogy, making the analysis incomplete. For instance, it is im-
possible to detect the most loaded physical edges, which
might have crucial meaning for the resilience of the system.
A comprehensive view of the system often requires one to
analyze both layers �physical and traffic� together.

Unfortunately, data sets including both physical topology
and traffic flows are rather sparse and difficult to obtain. In
this paper we propose an approach to extract the physical
structure and network of traffic flows from timetables. Time-
tables of trains, buses, trams, metros, and other means of
mass transportation �henceforth called vehicles� are publicly
available. They provide us with the available connections
and their times. Timetables also contain information about

the physical structure of the network and the traffic flows in
it, but as we show later, they often require a nontrivial pre-
processing to be revealed.

II. SPACES AND THE DIFFICULTY OF THE PROBLEM

In order to position our contribution in the range of works
in the field, we begin with a systematic definition of the
topology of transportation systems. The set of nodes is de-
fined by the set of all stations �train stations, bus stops, etc.�.
It is not obvious, however, what should be interpreted as an
edge. Its choice depends on what we want to be reflected by
the topology of the physical graph. In the literature there are
essentially three approaches that define three different
“spaces”: here we call them “space of changes,” “space of
stops,” and “space of stations.”

In the space of changes, two stations are considered to be
connected by a link when there is at least one vehicle that
stops at both stations. In other words, all stations used by a
single vehicle are fully interconnected and form a clique.
This approach neglects the physical distance between the sta-
tions. Instead, in the resulting topology, the length of the
shortest path between two arbitrary stations A and B is the
number of changes of the mean of transportation one needs
to get from A to B.1 This approach was used in Refs.
�3,12,13�; in the latter, the authors used the term space P.

In the space of stops, two stations are connected if they
are two consecutive stops on a route of at least one vehicle
�13�. Here the length of the shortest path between two sta-
tions is the minimal number of stops one needs to make.
Note that the number of stations traversed on the way might
be larger, because the vehicles do not necessary stop on all of
them.

1In this sense, a graph in the space of changes is closely related to
the dual interpretation of urban road networks �5,7,42�, where
streets �of a given name� map to nodes and intersections between
streets map to links between the nodes. In a transportation network
in the space of changes, the length of the shortest path is the number
of changes of the mean of transportation, whereas the length of the
shortest path in a dual graph of a city is the number of changes of
streets on the way from the starting point to destination.
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In the space of stations, two stations are connected only if
they are physically directly connected �with no station in
between�. This reflects the topology of the real-life infra-
structure. Here, the length of the shortest path between two
stations is the minimal number of stations one has to traverse
�stopping or not�. This approach was used in Ref.
�4,10,11,14�.

In Fig. 1 we give an illustration of the three spaces. It is
easy to see that the graph in the space of stations is a sub-
graph of the graph in the space of stops, which in turn is a
subgraph of the graph in space of changes.

The topologies in the space of changes and space of stops
can be directly obtained from timetables. In the space of
changes, for each vehicle, we fully connect all stations it
stops at. Then we simplify the resulting graph by deleting
multiedges. In the space of stops, we connect every two con-
secutive stops in the routes of vehicles. As shown in Fig.
1�c�, the topology in the space of stops can have shortcut
links that do not exist in the real-life infrastructure. These
shortcuts should be eliminated in the space-of-stations topol-
ogy, which makes it more challenging to obtain. To the best
of our knowledge, the only work on extracting the real physi-
cal structure �the topology in the space of stations� from
timetables was done in the context of railway networks in the
Ph.D. dissertation of Lebers �24�. The proposed solution first
obtains the physical graph in the space of stops. Next, spe-
cific structures in the initial physical graph, called edge
bundles, are detected. The Hamiltonian paths2 within these
bundles should indicate the real �nonshortcut� edges. Unfor-
tunately, the bundle recognition problem turned out to be NP
complete. The heuristics proposed in Ref. �24� result in a
correct real and shortcut classification of 80% of the edges in
the studied graphs. The approach we propose in this paper is
based on simple observations that were omitted in Ref. �24�.
This results in a much simpler and more effective algorithm.

III. RELATED WORK

Timetables have been used as a data source for a network
construction in Refs. �3,13�. However, the topologies ob-
tained in these works were in either the space of changes or
space of stops; neither of them reflected the real-life infra-
structure. Moreover, real traffic patterns were not considered
in these studies. This is understandable, because it is difficult
to interpret a traffic flow in the spaces of changes and stops.
In the space of changes every train transforms into a clique.
Counting for a given edge the number of cliques it partici-
pates in would result in a weighted graph where we could
analyze not only the average number of changes, but also the
average waiting time on stations �the more trains on a given
edge, the shorter, on average, we have to wait�. While this
approach might be interesting and useful, this is quite far
from the concept of traffic flows. In the space of stops, the
notion of a traffic flow is also unclear. Does the “traffic” on
a shortcut link B-D in Fig. 1�c� have any physical meaning?
We know that this traffic actually traverses the links B-C and
C-D, increasing their load and interfering with them. Ignor-
ing this effect would give us a biased picture. In contrast, in
the space of stations, the traffic flows have an unambiguous
and natural interpretation. It is the exact route of a train in
the graph representing the real physical infrastructure.

Another class of networks that can be constructed with
the help of timetables are airport networks �6,25–27�. There,
the nodes are the airports and edges are the flight connec-
tions. The weight of an edge reflects the traffic on this con-
nection, which can be approximated by the number of flights
that use it during 1 week. In this case, both the topology and
traffic information are explicitly given by timetables. This is
because the routes of planes are not constrained to any physi-
cal infrastructure, as opposed to roads for cars or rail tracks
for trains. So there are no “real” links and “shortcut” links. In
a sense all links are real and the topologies in the space of
stops and space of stations actually coincide.

Inferring the space-of-stations topology from timetables
becomes simple also in another special case, where the ve-

2The Hamiltonian path is a path that passes through every vertex
of a graph exactly once.

FIG. 1. �Color online� An illustration of the transportation network topology in three spaces. �a� The routes of three vehicles. The route
of line 2 passes through node C on the way from B to D, but the vehicle does not stop there. �b� The topology in the space of changes. Each
route results in a clique. An edge is indicated by two colors, when it originates from two routes, but is merged into a single link. �c� The
topology in the space of stops. The “shortcut” B-D is a legitimate edge in this space. �d� The topology in the space of stations. This graph
reflects the topology of the real-life infrastructure.
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hicles stop at each station they traverse �e.g., in many sub-
way networks�. This naturally eliminates the shortcuts, mak-
ing the topologies in the space of stops and space of stations
identical. This is not true in the general case, with both local
and express vehicles.

In the remainder of this paper, we introduce necessary
notation in Sec. IV. Next, in Sec. V we give an algorithm that
extracts the real physical structure �a topology in the space of
stations� and the network of traffic flows from timetables. In
Sec. VI we test our algorithm on timetables of three large
transportation networks at three different scales: city, country
and continent. We also analyze the resulting physical topolo-
gies and compare them with those obtained by alternative
approaches. Finally, in Sec. VII we conclude the paper.

IV. NOTATION

A. Two layers

We follow the multilayer framework introduced in Ref.
�21�. An example with two layers is shown in Fig. 2. The
lower-layer topology is called a physical graph G�

= �V� ,E��, and the upper-layer topology is called a logical
graph G�= �V� ,E��. We assume that the sets of nodes at both
layers are identical—i.e., V��V�—but as a general rule, we
keep the indices � and � to make the description unambigu-
ous. Let N= �V��= �V�� be the number of nodes. Every logical
edge e�= �u� ,v�� is mapped on the physical graph as a path
M�e���G� connecting the nodes u� and v�, corresponding
to u� and v�. �A path is defined by the sequence of nodes it
traverses.� The set of paths corresponding to all logical edges
is called a mapping M�E�� of the logical topology on the
physical topology.

This simple multilayer framework was inspired by the
well-established and highly specialized ISO/OSI network
model in computer networking �28�. A similar layered archi-
tecture is also used to model economic systems �29�. It con-
sists of a set of nodes �agents� connected by a number of
various topologies, each defining a different layer. These lay-
ers are coupled by some interactions, but in contrast to our

model, there is no clear hierarchy and mapping of the upper-
layer edge as a path in the layer underneath.

In the field of transportation networks the undirected, un-
weighted physical graph G� captures the topology of the
physical infrastructure �i.e., in the space of stations�. In con-
trast, the weighted logical graph G� reflects the undirected
traffic flows and is closely related to the concept of “traffic
matrix” known in transportation science �30�.3 The logical
topology is therefore �usually� very different from the physi-
cal one. Every logical edge e� is created by connecting the
first and last nodes of the corresponding traffic flow �omit-
ting the intermediate stations� and by assigning a weight
w�e�� that represents the intensity of this flow. The mapping
M�e�� of the edge e� is the path taken by this flow.

B. Timetable data

We take a list of all vehicles departing in the system
within some period �e.g., one weekday�. Denote by R
= �ri�i=1,. . .,�R� the list of routes followed by these vehicles,
where �R� is the total number of vehicles. A route ri of the ith
vehicle is defined by the list of nodes it traverses. Note that
since there are usually more vehicles �than one� following
the same path on one day, some of the routes may be iden-
tical.

V. ALGORITHM

In this section we sketch our algorithm that extracts the
real physical structure and the network of traffic flows from
timetables. The details are described in the Appendix.

The algorithm consists of three phases. In the first
one, initialization, based on the set of routes R, we create
the set of nodes V�=V� and the physical topology Gstop

�

= �V� ,Estop
� � in the space of stops. In the second, the main

phase, the sets R and Estop
� are iteratively refined by detecting

and erasing the shortcut links in the physical graph Gstop
� ,

resulting in the physical topology Gstat
� = �V� ,Estat

� � in the
space of stations. Finally, in the third phase, we group the
vehicles with identical routes and obtain the weighted logical
graph G� and the mapping M�E�� of the logical edges on the
physical graph Gstat

� .

VI. STUDY OF THREE REAL-LIFE NETWORKS

In this section we apply our algorithm to extract the data
from the timetables of three examples of transportation net-
works, with sizes ranging from city to continent. As an ex-
ample of a city, we take the mass transportation system
�buses, trams, and metros� of Warsaw �WA�, Poland; its
timetables are available at Ref. �31�. At a country level, we
study the railway network of Switzerland �CH�. Finally, we
investigate the railway network formed by major trains and

3The logical graph and the traffic matrix are not the same objects.
The traffic matrix reflects the people’s demands, whereas the logical
topology is the result of an an optimization process taking into
account many factors, such as continuity of the path, traveling
times, availability of stock, and, of course, the traffic matrix.

FIG. 2. An illustration of the two-layer model �see �21� for more
details� with the actual mapping M�E�� of the logical graph G� on
the physical graph G�. The logical edge e1

� is mapped on G� as the
path M�e1

��= �v1
� ,v2

� ,v3
��.
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stations in most countries of central Europe �EU�.4 The time-
tables of both CH and EU networks are available at Ref.
�32�. The basic parameters of the data sets and of the result-
ing graphs can be found in Table I.

This section is organized as follows. First, we focus on a
particular data set in order to study the performance of our
algorithm. Next, we analyze and compare the physical
graphs originating from all three data sets in each of the
considered spaces. Finally, we focus our attention on the
logical graphs and traffic flows extracted by our algorithm.

A. Example: The railway network of Switzerland

As an illustration, let us consider more closely the railway
network of Switzerland. According to our timetable, on a
typical weekday there are �R � =6957 different trains that fol-
low �E� � =505 different routes �usually there is more than
one train following the same route during one day�. Our data
contains N=1613 stations in Switzerland, together with their
physical coordinates. In Fig. 3 we present the graphs ob-
tained from this data set. The physical graphs in the three
spaces are shown in Figs. 3�a�–3�c�. The graph in the space
of stations was obtained with the help of the algorithm intro-
duced in the previous section. The number of vertices is the
same in all three spaces. The number of edges in the space of
changes, �Echange

� � =19 827, is much larger than in the other
two spaces. Although at first sight the physical graphs in the
space of stations and space of stops look comparable, the
latter has a number of �nonexisting in reality� shortcut links.
For a visual verification of correctness of our algorithm, we
show in Fig. 3�d� the real map of the Swiss railway system;
we observe only minor differences between �c� and �d�. Fi-
nally, in Fig. 3�e�, we present the logical graph that reflects
the traffic flows in the network. This graph is very heterog-

enous both in the weights of edges and in the layout of
traffic.

B. Physical graph in three spaces

How does the choice of space affect the topology? We
study in this section the physical graphs in the three spaces
with respect to the basic metrics often used in the analysis of
complex networks.

1. Diameter d� and average shortest path length Šl�
‹

The average shortest path length 	l
 is computed over the
lengths of shortest paths between all pairs of vertices. The
diameter d is the longest of all shortest path lengths. These
parameters are usually closely related.

The diameter d� and the average shortest path length 	l�

of the graphs in the space of stations are large �see Table I�.
Moreover, 	l�
 scales roughly as �N with the number of
nodes N �e.g., 	l�
�x0.45 for the EU data set—see Fig. 4�a��.
This behavior is typical of many planar, latticelike infrastruc-
ture networks embedded in a two-dimensional space.

The graphs in the space of stops have about 10%–15%
more edges than their counterparts in the space of stations.
The difference is not large, and one could possibly expect
similar values and scaling of the diameter and the average
shortest path length. However, these 10%–15% edges are
fundamentally different from typical edges in the space of
stations; they are shortcut links. It was shown in Ref. �33�
that the diameter of a graph is very sensitive to the existence
of shortcuts. Even a relatively small number of shortcuts can
dramatically bring down the diameter and the average short-
est path length. We observe this phenomenon in our graphs.
For instance, in the EU data set, the diameter drops about 4
times, from d�=184 in the space of stations to 48 in the
space of stops. Similarly, the average shortest path length
drops by roughly the same factor. Moreover, the scaling of
	l�
 in N is no longer �N, but logarithmic. For instance, for

4In the EU data set, Paris has originally several stations that are
not directly connected between each other. Following the approach
in Ref. �4�, we merged them into one common node.

TABLE I. The studied data sets. “Area” is the surface occupied by the region covered by the network. N is the number of nodes �stations
and stops�. �R� is the total number of vehicles departing in the network during one weekday. �E�� is the number of edges in the logical graph
�number traffic flows�; it is much smaller than �R�, because the vehicles following the same route are grouped together in phase 3 of our
algorithm. All the remaining parameters are computed for the physical graphs G�: �E�� is the number of edges, 	k�
 is the average node
degree, d� stands for the diameter, 	l�
 is the average shortest path length, and c� is the clustering coefficient.

General Traffic Physical graph

Dataset Area �km2� N �R� �E�� Space �E�� 	k�
 d� 	l�
 c�

WA �Warsaw� changes 78437 102.3 4 2.3 0.6829

480 1533 25’995 221 stops 2249 2.9 76 19.0 0.1681

stations 1832 2.4 90 28.1 0.0092

CH �Switzerland� changes 19827 24.6 8 3.6 0.9095

41’300 1613 6’957 505 stops 1922 2.4 61 16.3 0.0949

stations 1680 2.1 136 46.6 0.0004

EU �Europe� changes 88329 36.4 8 3.7 0.7347

2’081’000 4853 60’775 6703 stops 8600 3.5 48 12.6 0.3401

stations 5765 2.4 184 50.9 0.0129
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FIG. 3. The railway network in Switzerland �CH�. �a�, �b�, �c� Physical graphs in the space of changes, stops, and stations, respectively.
�d� The real map of the rail tracks in Switzerland. �e� The logical graph. Every edge connects the first and last stations of a particular train
route; its weight reflects the number of trains following this route in any direction.
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the EU data set we have 	l�
�3.6 ln x �see Fig. 4�b��. This
type of scaling is typical of random graphs and small worlds
�33�. Therefore, the shortcut edges, although not very numer-
ous, play a very important role and make the graphs in the
space of stops very different from those in the space of sta-
tions. �This effect is not so strongly pronounced in the WA
data set. The underlying reason is the relatively short length
of shortcuts �usually two hops�, which was shown to affect
the diameter only to a small extent �34�.�

Finally, the graphs in the space of changes have very
small diameters and average shortest path lengths. This is
mainly because of their high density �number of edges�.

2. Node degree k

The node degree distributions in all three spaces are plot-
ted in a semilogarithmic scale in Figs. 5�a�–5�c�. Addition-
ally, for the space of stops, we plot the degree distributions in
a log-log scale �Fig. 5�d��, because it is not obvious which fit
is better, exponential or power law �it was also pointed out in
�13��. For the other two spaces we observe a clear linear
trend indicating the exponential behavior. This was expected
in the space of stations, because the degree distribution of
many infrastructure networks was shown to be narrow �here
one decade� and to decay exponentially �see, e.g., power
lines in �35��. In the space of stations the vast majority of
nodes have degree equal to 2, indicating long segments of
stations without junctions.

3. Clustering coefficients c

We have studied the clustering coefficients c defined as a
probability that two randomly chosen neighbors of a node
are also direct neighbors of each other �33�.

The clustering coefficients of topologies in the space of
changes are very high, which is a direct consequence of a
very high density and the existence of many cliques. What is

more interesting is that in all three data sets, the clustering
coefficient in the space of stops is one to two orders of mag-
nitude larger than in the space of stations. As in the case of
the graph diameter, here again the shortcut links turn out play
a very important role in the topology.

C. Traffic flows and the logical graph

Now we turn our attention to the traffic that flows in our
networks. We extracted this scarce data with the help of the
algorithm introduced in this paper. As we argued in Sec. III,
the interpretation of traffic flowing through networks in the
space of changes and space of stops is rather cumbersome.
Therefore we restrict our analysis to the traffic flows travers-
ing the physical graph in the space of stations.

In Fig. 6 we compare the lengths of traffic flows before
and after application of our algorithm. A new traffic flow can
be either equal in length to the original one �if no shortcut
was detected on its path� or longer. We observe that for all
three data sets, there are a significant number of flows that
become longer. In some cases this increase in length is by as
much as 10 times. Generally, the longer the original flow is,
the less extended it gets during a run of our algorithm. This
is expected, because a long flow in a timetable usually cor-
responds to a local train that stops at all stations �i.e., uses no
shortcuts�.

In Fig. 7 we present basic distributions measured for logi-
cal graphs in the three data sets. Recall that the edges in a
logical graph reflect the traffic flows. Therefore, the node

FIG. 4. The scaling of the average shortest path length 	l�
 with
the number of nodes N for the EU data set. The physical graph was
randomly partitioned with multiple horizontal and vertical cuts into
a number of smaller components. For these components we plot
scatter plots of 	l�
 vs N �little gray dots in the background�, as well
as their binned values �large black disks�. The space-of-stations plot
�a� is made in a log-log scale with a log-linear inset of the same
distribution for comparison; the space-of-stops plot �b� is made in a
log-linear scale with a log-log inset. In both plots we draw the
linear best fit in the respective log-log and log-lin plots.

FIG. 5. �Color online� Node degree distributions in physical
graphs in the three spaces, for the data sets WA, CH, and EU. Plots
�a�–�c� use a semilogarithmic scale, plot �d� uses a log-log scale. If
necessary, the data are lin-binned or log-binned, accordingly.
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degree k� is the number of different connections starting or
ending at the corresponding station �Fig. 7�a��. The strength
s� of a node is the sum of the weights of neighboring edges
�25�; here, it is the number of all connections starting or
ending at this station �Fig. 7�b��. Finally, the weight w�e�� of
a logical edge is the traffic flow intensity �Fig. 7�c��.

All three distributions are heavily right skewed, meaning
that there is a small number of nodes and edges with very
high values of the observed parameter. We conclude that the
real-life traffic patterns are very heterogenous, in both space
�node degree and strength� and traffic flow intensities. This
was shown in Ref. �21� to be the reason for the high unpre-
dictability of the load distribution in transportation networks.

D. Node load and its estimators

Our algorithm extracts from timetables not only the real
physical and logical topologies, but also their actual
mapping—i.e., the exact routes of the traffic flows. This al-
lows us to compute the real load l�v� of node v, naturally
defined as the sum of the weights of all traffic flows travers-
ing v �21�. As this information is often missing in many
existing data sets, many attempts were developed to approxi-
mate the node load with some topological metrics. In this
section we test on our data sets the performance of four
different approaches.

Our first load estimator is node degree k�. It seems natural
that the nodes with high degree carry more traffic than the
less connected nodes.

Our second metric is betweenness b� �36�. The between-
ness of a vertex v is the fraction of shortest paths between all
pairs of vertices in a network that pass through v. If there is
more than one shortest path between a given pair of vertices,
then all such paths are taken into account with equal weights
summing to 1. As betweenness aims at capturing the amount
of information passing through a vertex, it is often taken
directly as a measure of the load �15–20�.

Our third load estimator is inspired by the approach in
Ref. �2�. In this analysis of a U.S. power grid, the authors
know not only the network topology, but also the set of all
electricity generators. This additional information is used to
estimate the load by constructing the shortest paths of equal
weight from all sources �generators� to all other nodes in the
graph �power consumers�. Similarly, in the context of rail-
way networks, we can identify the set of all traffic sources
�destinations� as the set of all first �last� stations of all trains.
Next, we generate unweighted shortest paths from every
source to every destination. The number of these paths tra-
versing a given node v is called the restricted betweenness
br

� of v.
Our last load estimator uses a more detailed knowledge of

a real traffic pattern. Instead of generating traffic from each
source to all destinations, we identify the actual destina-
tion�s� of traffic originating from every source and construct
the unweighted shortest paths only between these source-
destination pairs. This metric is very similar to the node load
l, except that now we assume that all traffic flows have the
same intensity �weight�. Therefore, we call this load estima-
tor the simple load ls.

In Fig. 8 we present scatter plots of the four load estima-
tors versus the real load l, separately for WA, CH, and EU.
The value of the corresponding Pearson’s correlation coeffi-
cient is shown in the top left corner of every plot. As we
pointed out in Ref. �21�, in our data set the node degree
approximates the real load better than the betweenness �its
Pearson’s coefficient is higher�. Nevertheless, both of them
are very far from being satisfactory. So large disparities may
strongly affect the results of the network performance analy-
sis based on the topological load estimators. Surprisingly,
knowledge of the sets of all traffic sources and destinations
�but not source-destination pairs� does not help—the re-
stricted betweenness br

� gives roughly the same results as the

FIG. 6. The lengths of original timetable routes �x axis� versus
these lengths after the application of our algorithm �y axis�. All
three data sets are drawn in the same scale.

FIG. 7. �Color online� Properties of logical graphs for the data
sets WA, CH, and EU. �a� Node degree distribution. Many nodes
are isolated—they represent intermediate stations on which no train
starts or terminates its journey. The isolated nodes we represent here
as having “degree” equal to 0.1. �b� Node strength distribution. �c�
Edge weight �traffic flow intensities� distribution. All data are log-
binned and plotted in a log-log scale.
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“pure” betweenness b�. In contrast, the simple load ls esti-
mator performed much better, especially for the WA data set.

We conclude that in order to have at least a rough ap-
proximation of the real load, we need some additional
knowledge on the traffic pattern. Knowing only the sets of
traffic sources and destinations is clearly not enough in our
data sets, but knowledge of all source-destination pairs
�equivalent to the logical unweighted topology� might be
sufficient in some applications.

Finally, we also tried weighted combinations of the four
load estimators. Would the combined knowledge of between-
ness and node degree reveal some hidden correlation be-
tween the two, resulting in a more accurate real load estima-
tor? Unfortunately, all such attempts only degrade the
performance of the best involved estimator.

VII. CONCLUSIONS

The knowledge of real-life traffic patterns is crucial in the
analysis of transportation systems. These data are usually

much more difficult to get than the pure topology of a net-
work. In this paper we have proposed an algorithm for ex-
tracting both the physical topology and network of traffic
flows from timetables of public mass transportation systems.
We have applied our algorithm to three large transportation
networks. This enabled us to make a systematic comparison
between three different approaches �or “spaces”� to construct
a graph representation of a transportation network. The re-
sulting physical topologies are very different. In particular,
the seemingly similar graphs in the space of stops and space
of stations turn out to be very different in terms of basic
graph-theory metrics such as diameter, average shortest path
length, clustering coefficient and node degree distribution.
This is due to the existence of shortcut links in the space of
stops. Our algorithm detects and eliminates these shortcuts
and extracts the topology in the space of stations. Only this
graph reflects the real-life physical infrastructure that is used
by the traffic flows, becomes congested, or can be prone to
failures or susceptible to attacks. In contrast, the edges in the
space of changes and space of stops are somewhat “virtual”
and the notion of traffic in these graphs is unclear, if it at all
makes any sense. What is important is that the results are
consistent across three different scales of the studied net-
works �city, country, and continent�.

We have also tested different approaches to estimate the
real load in the network. In our data sets, the purely topo-
logical metrics, such as node degree and betweenness, give
very bad approximates. Surprisingly, knowledge of all traffic
sources and destinations does not improve the situation. The
minimum information we need to obtain at least a rough
approximation of the real load is the �unweighted� set of all
source-destination pairs.

This work has several possible directions for the future.
For instance, knowledge of real traffic patterns allows us to
reexamine the error and attack tolerance �37� of transporta-
tion systems, which might look completely different when
focusing on traffic instead of topology. Another direction
would be to exploit the additional information available in
some timetables. For instance, in our data sets CH and EU,
we also know the geographical coordinates of the nodes.
They fall therefore in the category of spatial networks that
have been recently intensively studied �4,6,9,38–40�. In par-
ticular, we think that incorporating real traffic patterns in the
models can help to understand the processes that govern the
evolution of spatial networks.

Finally, the data are available at Ref. �41�.
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APPENDIX

In this appendix we give the details of our algorithm to
extract the physical and logical network data from time-
tables. It consists of three phases, as follows.

FIG. 8. �Color online� The scatter plots of the node degree d�

�top�, betweenness b� �upper middle�, restricted betweenness br
�

�lower middle�, and simple load ls �bottom� versus the real load l.
Each column corresponds to a different data set: WA �left�, CH
�middle�, and EU �right�. The average log-binned values are set in
bold in every plot. In the top left corner of every plot we give the
value of the corresponding Pearson’s correlation coefficient.
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Phase 1: Initialization

In this phase we interpret every two consecutive nodes in
any route ri�R as directly connected. Consequently, we con-
nect these nodes with a link, which can be written as

Estop
� = �

i=1,. . .,�R�
E�ri� ,

where E�ri� is the set of all pairs of adjacent nodes in ri �i.e.,
all edges in ri�. This results in the physical topology Gstop

�

= �V� ,Estop
� � in the space of stops.

Phase 2: Deleting shortcuts

In this phase, at each iteration, we detect a shortcut in the
set of physical edges, delete it, and update all routes ri that
use this shortcut. Denote by e�1�

� and e�2�
� the two end nodes of

e� and by Rev�Pe�� the reversed version of Pe� �the sequence
from the last node to the first one�. The algorithm is as fol-
lows:

�1� Estat
�

ªEstop
�

�2� Find a tuple �e� ,ri� such that e� is a shortcut for ri:
e�1�

� �ri and e�2�
� �ri and e��E�ri�.

�3� IF no �e� ,ri� found THEN RETURN Estat
� and R.

�4� Pe�ªsubpath of ri from e�1�
� to e�2�

�

�5� FOR all rj �R DO:
�a� If �e�1�

� ,e�2�
� ��rj THEN replace it with Pe�

�b� If �e�2�
� ,e�1�

� ��rj THEN replace it with Rev�Pe��
�6� Estat

�
ªEstat

� \ �e��
�7� GOTO 2
In step 2, we look for a physical link that is a shortcut. We

declare a physical link e� to be a shortcut if there exists a
route ri�R such that e� connects two nonconsecutive nodes
in ri. For example, in Fig. 1�c�, e�= �B ,D� is a shortcut be-
cause it connects two not neighboring nodes in the route r1
of line 1. If no physical edge can be declared a shortcut, the
algorithm quits in step 3, returning Estat

� and R. Otherwise, in
step 4, we find the path Pe� that this shortcut should take. In
Fig. 1�c� this path is Pe� = �B ,C ,D�. In step 5, we update
the set of routes R by replacing every shortcut link e�

in every route using it with the corresponding path Pe�.
In our example, the updated route of line 2 becomes
r2= �A ,B ,C ,D ,E�. It is thus identical to the route of line 1.
Finally, in step 6 we delete the shortcut e� from the physical
graph. We iterate these steps until no shortcut is found �step
2�. The resulting physical graph Gstat

� = �V� ,Estat
� ��Gstop

� , is a
graph in the space of stations.

Phase 3: Grouping the same routes together

Finally, based on the list R of routes updated in phase 2,
we find groups of vehicles that follow the same path �in any
direction�. Each such group defines one edge e� in the logical
graph; e� connects the first and last nodes of the route, omit-
ting all the intermediate stations. The number of vehicles that
follow this route becomes the weight w�e�� of the logical
edge e�; the route itself becomes the mapping M�e�� of e� on
the physical graph.

Denote by ri�first� ,ri�last� the first and last nodes in ri and by
E(M�e��) the set of all physical edges in the mapping of e�.
Now, phase 3 can be stated as follows:

�1� E�=�, M =�
�2� FOR i=1 TO �R� DO:

�a� ei
�= �ri�first� ,ri�last��

�b� IF ei
��E� THEN w�ei

��ªw�ei
��+1

ELSE E�=E�� �ei
��, M�ei

��=ri, w�ei
��=1

�3� Estat
� =�e��E�E(M�e��)

In the example in Fig. 1, after phase 2 the routes of lines
1 and 2 become identical; therefore, in phase 3 they are
grouped together defining a logical edge e1

�= �A ,E�
with the weight w�e1

��=2 and the mapping M�e1
��

= �A ,B ,C ,D ,E�. A second logical edge is e2
�= �F ,H� with

w�e2
��=1 and M�e2

��= �F ,B ,G ,H�.

Accuracy of the algorithm

There are potential sources of mistakes and inaccuracies
in our approach. First, the links that we delete as being short-
cuts might actually exist in reality. However, a comparison of
the results of our algorithm with the real maps �see Sec. VI�
reveals very few differences, which means that this source of
failures occurs very rarely in real data sets.

A second problem lies in the estimation of the traffic pat-
tern. Interpreting the routes of trains, buses, trams, metros,
etc., as traffic flows gives us a picture at a low level of
granularity. We view every vehicle as a traffic unit, regard-
less of its size or the number of people it carries. Moreover,
people usually use these vehicles only on a portion of their
total journey, not from the first to the last station. Clearly, the
vehicle routes are the result of an optimization process that
take into account many factors, such as people’s demand,
continuity of the path, traveling times, and availability of
stock. However, we believe that they reflect well the general
direction and intensity of travels, and we take a vehicle as a
basic traffic unit. After all, these are the vehicles that appear
on the roads and cause traffic, not the people they transport.
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